الاثنين، 10 أغسطس 2015

فروع الرياضيات

فروع الرياضيات


للرياضيات فروع عديدة. وقد تختلف هذه الفروع في نوعية مسائلها والتطبيقات العملية لنتائجها.

الحساب. يشمل دراسة الأعداد الصحيحة والكسور والأعداد العشرية وعمليات الجمع والطرح والضرب والقسمة. وهو بمثابة الأساس لأنواع الرياضيات الأخرى حيث يقدم المهارات الأساسية مثل العد وتجميع الأشياء والقياس ومقارنة الكميات.

 الجبر. يشمل حل معادلات تحوي أحرفًا مثل س وص، تمثل كميات مجهولة. كذلك يستخدم في العمليات الجبرية الأعداد السالبة والأعداد الخيالية (الجذور التربيعية للأعداد السالبة).

 الهندسة. تدرس الهندسة خواص وعلاقات الأشكال في الفضاء. وتدرس الهندسة المستوية المربعات والدوائر والأشكال الأخرى في المستوى، وتُعنى الهندسة الفراغية بدراسة الأشكال ذات الأبعاد الثلاثة مثل المكعب والكرة.

 الهندسة التحليلية وحساب المثلثات. تربط الهندسة التحليلية بين الجبر والهندسة، فهي تعطي تمثيلاً لمعادلة جبرية بخط مستقيم أو منحنٍ. وتجعل من الممكن التعبير عن منحنيات عدة بمعادلات جبرية، ومثال على ذلك: فأن المعادلة س= ص2 تصف منحنى يُسمى القطع المكافئ.


ويستخدم الفلكيون والبحارة والمساحون حساب المثلثات بشكل كبير لحساب الزوايا والمسافات في حالة تعذر القياس بطريقة مباشرة. ويبحث حساب المثلثات في العلاقة بين أضلاع وزوايا المثلث، وعلى الأخص المثلث قائم الزاوية (مثلث إحدى زواياه 90°). وتسمى العلاقات بين أطوال ضلعين في مثلث قائم الزاوية بالنسب المثلثية. وباستخدام هذه النسب يمكن حساب الزوايا وأطوال أضلاع المثلث غير المعلومة من الزوايا والأطوال الأخرى المعلومة. وتصف المعادلات المتضمنة لنسب مثلثية المنحنيات التي يستخدمها الفيزيائيون والمهندسون لتحليل خواص الحرارة والضوء والصوت والظواهر الطبيعية الأخرى.

حساب التفاضل والتكامل والتحليل. له تطبيقات عدة في الهندسة والفيزياء والعلوم الأخرى. ويمدنا حساب التفاضل والتكامل بطرائق لحل عديد من المسائل المتعلقة بالحركة أو الكميات المتغيرة. ويبحث حساب التفاضل في تحديد معدل تغير الكمية. ويستخدم لحساب ميل المنحنى والتغير في سرعة الطلقة. أما حساب التكامل فهو محاولة إيجاد الكمية بمعلومية معدل تغيرها، ويستخدم لحساب المساحة تحت منحنى ومقدار الشغل الناتج عن تأثير قوة متغيرة. وخلافًا للجبر، فأن حساب التفاضل والتكامل يتضمن عمليات مع كميات متناهية الصغر (كميات صغيرة ليست صفرًا ولكنها أصغر من أي كمية معطاة).

ويتضمن التحليل عمليات رياضية متعددة تشمل اللانهاية والكميات المتناهية الصغر. ويدرس التحليل المتسلسلات اللانهائية وهي مجاميع غير منتهية لمتتابعات عددية أو صيغ جبرية. ولمفهوم المتسلسلات اللانهائية تطبيقات مهمة في مجالات عدة مثل دراسة الحرارة واهتزازات الأوتار.

الاحتمالات والإحصاء. الاحتمالات دراسة رياضية لمدى احتمال وقوع حدث ما. ويُسْتَخْدَم لتحديد فرص إمكانية وقوع حادث غير مؤكد الحدوث. فمثلاً، باستخدام الاحتمالات يمكن حساب فرص ظهور وجه القطعة في ثلاث رميات لقطع نقدية.

أما الإحصاء فهو ذلك الفرع من الرياضيات الذي يهتم بجمع البيانات وتحليلها لمعرفة الأنماط والاتجاهات العامة. ويعتمد الإحصاء إلى حد كبير على الاحتمالات.

·   نظرية المجموعات والمنطق. تبحث نظرية المجموعات في صفات وعلاقات المجموعات. والمجموعة هي تجمع من الأشياء، قد تكون أعدادا، أو أفكارًا أو أشياء أخرى. وتكمن أهمية دراسة المجموعات في التحقق من المفاهيم الرياضية الأساسية.

أما في مجال المنطق ـ وهو ذلك الفرع من الفلسفة التي تتعامل مع قواعد التعليل الصحيح. فقد طور علماء الرياضيات المنطق الرمزي. وهو نظام اصطلاحي للتعليل يستخدم الرموز والطرق الرياضية. وقد استنبط علماء الرياضيات نظمًا عديدة للمنطق الرمزي، كانت لها أهميتها في تطوّْر الحاسوب.


 للعودة للصفحة الرئيسة

ليست هناك تعليقات:

إرسال تعليق